CONTENTS

PRECAUTION .. 3

PRECAUTIONS ... 3

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER" .. 3

Service Notice and Precautions for TPMS .. 3

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER" .. 3

Service Notice and Precautions for Road Wheel .. 3

PREPARATION .. 5

PREPARATION ... 5

Special Service Tool .. 5

Commercial Service Tools .. 5

SYSTEM DESCRIPTION .. 6

COMPONENT PARTS .. 6

Component Parts Location .. 6

BCM .. 7

Tire Pressure Sensor .. 7

Remote Keyless Entry Receiver (Tire Pressure Receiver) .. 7

Outside Key Antennas .. 8

SYSTEM .. 9

System Description .. 9

Easy Fill Tire Alert Function .. 10

DIAGNOSIS SYSTEM (BCM) .. 12

COMMON ITEM ... 12

COMMON ITEM : CONSULT Function (BCM - COMMON ITEM) .. 12

AIR PRESSURE MONITOR .. 13

AIR PRESSURE MONITOR : CONSULT Function (BCM - AIR PRESSURE MONITOR) .. 13

DIAGNOSIS SYSTEM (TIREF PRESSURE MONITORING SYSTEM) ... 15

CONSULT Function ... 15

ECU DIAGNOSIS INFORMATION .. 17

BCM .. 17

List of ECU Reference .. 17

WIRING DIAGRAM ... 18

TIRE PRESSURE MONITORING SYSTEM .. 18

Wiring Diagram .. 18

BASIC INSPECTION .. 23

DIAGNOSIS AND REPAIR WORK FLOW .. 23

Work Flow .. 23

ID REGISTRATION PROCEDURE .. 25

Description .. 25

Work Procedure .. 25

CONFIGURATION (TIRE PRESSURE MONITORING SYSTEM) ... 28

Work Procedure .. 28

DTC/CIRCUIT DIAGNOSIS .. 29

C1704, C1705, C1706, C1707 LOW TIRE PRESSURE .. 29

DTC Description .. 29

Diagnosis Procedure .. 30

C1708, C1709, C1710, C1711 TIRE PRESSURE SENSOR .. 31

DTC Description .. 31

Diagnosis Procedure .. 32

C1716, C1717, C1718, C1719 TIRE PRESSURE SENSOR .. 35

DTC Description .. 35

Diagnosis Procedure .. 36

C1729 VEHICLE SPEED SIGNAL ... 37

DTC Description .. 37

Diagnosis Procedure .. 37
< PRECAUTION >

PRECAUTION

PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. Information necessary to service the system safely is included in the SR and SB section of this Service Manual.

WARNING:

• To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.

• Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SR section.

• Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS

WARNING:

• When working near the Airbag Diagnosis Sensor Unit or other Airbag System sensors with the Ignition ON or engine running, DO NOT use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.

• When using air or electric power tools or hammers, always switch the Ignition OFF, disconnect the battery and wait at least three minutes before performing any service.

Service Notice and Precautions for TPMS

WARNING:

Radio waves could adversely affect electric medical equipment. Those who use a pacemaker should contact the electric medical equipment manufacturer for the possible influences before use.

• Low tire pressure warning lamp blinks for 1 minute, then turns ON when occurring any malfunction except low tire pressure. Erase the self-diagnosis memories for Tire Pressure Monitoring System (TPMS), or register the ID to turn low tire pressure warning lamp OFF. For ID registration, refer to WT-25, "Description".

• ID registration is required when replacing or rotating wheels, replacing tire pressure sensor or low tire pressure warning control unit. Refer to WT-25, "Description".

• Replace grommet seal, valve core and valve cap of tire pressure sensor in TPMS, when replacing each tire by reaching the wear limit. Refer to WT-68, "Removal and Installation".

• Never install tire pressure sensor from other vehicles. Tire pressure monitoring system (TPMS) does not function if specified Genuine NISSAN tire pressure sensor is not installed.

• Because the tire pressure sensor conforms to North America radio law, the following items must be observed.
 - The sensor may be used only in North America.
 - It may not be used in any method other than the specified method.
 - It must not be disassembled or modified.

Service Notice and Precautions for Road Wheel

• Genuine NISSAN aluminum wheel is designed for each type of vehicle. Use it on the specified vehicle only.

• Use Genuine NISSAN parts for the road wheels, valve caps and wheel nuts.

• Always use them after adjusting the wheel balance. For the balance weights, use Genuine NISSAN aluminum wheel weights.

• Use caution when handling the aluminum wheels, because they can be easily scratched. When removing dirt, do not use any abrasives, a wire brush, or other items that may scratch the coating. Use a neutral detergent if a detergent is needed.

• After driving on roads scattered with anti-icing salts, wash off the wheels completely.

Revision: October 2015

WT-3

2016 Maxima NAM
• When installing road wheels onto the vehicle, always wipe off any dirt or foreign substances to prevent them from being trapped between the contact surfaces of wheel.
• Do not apply oil to nut and bolt threads.
• When tightening the valve cap there is a risk of damaging the valve cap if a tool is used. Tighten by hand.
The actual shape of the tools may differ from those illustrated here.

<table>
<thead>
<tr>
<th>Tool number (TechMate No.)</th>
<th>Tool name</th>
<th>Description</th>
</tr>
</thead>
</table>
| (J-50190) | Signal Tech II | • Activate and display TPMS transmitter IDs
• Display tire pressure reported by the TPMS transmitter
• Read TPMS DTCs
• Register TPMS transmitter IDs
• Test remote keyless entry key fob relative signal strength
• Check Intelligent Key relative signal strength
• Confirm vehicle Intelligent Key antenna signal strength
• Compatible with future sensors
• Equipped with a display |

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Description</th>
</tr>
</thead>
</table>
| KV48105501 (J-45295-A) | Transmitter activation tool
• Activate TPMS transmitter IDs
• Compatible with future sensors
• Equipped with a display (KV48105501 only) |

Commercial Service Tools

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power tool</td>
<td>Loosening nuts, screws and bolts</td>
</tr>
</tbody>
</table>
A. Wheel (LF shown, others similar)

<table>
<thead>
<tr>
<th>No.</th>
<th>Component parts</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Front outside handle assembly RH (antenna)</td>
<td>Refer to [WT-8, "Outside Key Antennas"]</td>
</tr>
<tr>
<td>2.</td>
<td>Remote keyless entry receiver (tire pressure receiver)</td>
<td>Refer to [WT-7, "Remote Keyless Entry Receiver (Tire Pressure Receiver)"]</td>
</tr>
<tr>
<td>3.</td>
<td>ABS actuator and electric unit (control unit)</td>
<td>Mainly transmits the vehicle speed signal to BCM via CAN communication.</td>
</tr>
<tr>
<td>4.</td>
<td>BCM</td>
<td>Refer to [WT-7, "BCM"]</td>
</tr>
</tbody>
</table>
The BCM reads the tire pressure signal received by the remote keyless entry receiver (tire pressure receiver). In addition, the BCM also uses the outside key antennas (driver side, passenger side and rear bumper) to identify the location of the tire pressure sensors. The BCM has a self-diagnosis function used to detect system malfunctions.

Tire Pressure Sensor

A tire pressure sensor (1) integrated with a valve is installed in each wheel (2), and transmits a detected air pressure signal in the form of a radio wave. The radio signal is received by the remote keyless entry receiver (tire pressure receiver).

Remote Keyless Entry Receiver (Tire Pressure Receiver)

The remote keyless entry receiver receives the tire pressure signal transmitted by the tire pressure sensor in each wheel.
Outside Key Antennas

- For vehicles equipped with individual tire pressure display in the combination meter, the outside key antennas (driver side, passenger side and rear bumper) are used by the BCM to identify the location of the tire pressure sensor.
- Outside key antenna (driver side) and outside key antenna (passenger side) is installed in outside handle.
- Outside key antenna (rear bumper) is installed in the rear of rear bumper.
When the vehicle has reached a speed of 40 km/h (25 MPH) or greater, the BCM receives a signal transmitted from the tire pressure sensors/transmitters installed in each wheel. If the BCM detects low inflation pressure or a system malfunction, it sends a signal to the combination meter via CAN communication to illuminate the low tire pressure warning lamp. In addition, a warning message will be displayed in the vehicle information display. Refer to the Owner’s Manual for additional information.

The Tire Pressure Monitoring System (TPMS) has a Easy Fill Tire Alert function to aid in tire inflation. Refer to WT-10, "Easy Fill Tire Alert Function".

SYSTEM DIAGRAM

INPUT SIGNAL AND OUTPUT SIGNAL

Major signal transmission between each unit via communication lines is shown in the following table.

<table>
<thead>
<tr>
<th>Component</th>
<th>Signal description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination meter</td>
<td>Mainly receives the following signals from BCM via CAN communication: • Low tire pressure warning lamp signal • TPMS malfunction warning lamp signal • Tire pressure data signal • Buzzer output signal Transmits the vehicle speed signal via CAN communication for BCM.</td>
</tr>
<tr>
<td>ABS actuator and electric unit (control unit)</td>
<td>Transmits the vehicle speed signal via CAN communication for combination meter.</td>
</tr>
</tbody>
</table>

LOW TIRE PRESSURE WARNING LAMP AND INFORMATION DISPLAY INDICATIONS

Uses CAN communication from the BCM to illuminate the low tire pressure warning lamp on the combination meter.

<table>
<thead>
<tr>
<th>Name</th>
<th>Design</th>
<th>Layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low tire pressure warning lamp</td>
<td>[❗️]</td>
<td>Refer to MWI-9, "METER SYSTEM : System Description".</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Low tire pressure warning lamp</th>
<th>Information display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition switch OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Ignition switch ON (system normal)</td>
<td>ON for 1 second then turns off</td>
<td>No TPMS message</td>
</tr>
<tr>
<td>Low tire pressure</td>
<td>ON</td>
<td>Tire Pressure Low Add Air</td>
</tr>
</tbody>
</table>

Revision: October 2015
LOW TIRE PRESSURE LOCATION INDICATOR
The low tire pressure location indicator is displayed in the vehicle information display of the combination meter with the low tire pressure warning lamp and warning message under the following conditions:
- Tire pressure is low.
- TPMS detected a system malfunction.

TIRE PRESSURE DISPLAY
The adoption of this function allows tire pressure indication on the information display installed to the combination meter.

HAZARD WARNING LAMP INDICATION CONDITION
The hazard warning lamp blinks when ID registration is completed. Refer to WT-25, "Work Procedure".

BUZZER CONTROL CONDITION
The low tire pressure warning control unit transmits a buzzer request signal to BCM. Based on the signal, BCM sends a command to the combination meter to sound the buzzer. The buzzer sounds under the following conditions:
- When wake-up of registered wheel has been completed. Refer to WT-25, "Work Procedure".
- When tire goes flat.

Easy Fill Tire Alert Function

NOTE:
<SYSTEM DESCRIPTION>

When beginning tire inflation, it takes a few seconds for the Easy Fill Tire Alert to function. If there is no response for approximately 15 seconds or more, cancel the Easy Fill Tire Alert function and move the vehicle approximately 1 m (3.2 ft) backward or forward to try again.

- The Easy Fill Tire Alert function operates only when the select lever position is in P-range with the ignition switch ON.
- This function informs the driver with a visual and audible indication that the recommended COLD tire pressure has been reached.
- The hazard warning lamps blink when the recommended COLD tire pressure has been reached. After the recommended COLD tire pressure has been reached, the horn sounds once and the hazard warning lamps stop blinking.
- If the tire pressure value is equal to or greater than 30 kPa (0.31 kg/cm², 4 psi) more than the recommended COLD tire pressure, the hazard warning lamps flash and the horn sounds three times.
- To return the tire to the recommended COLD tire pressure, deflate the tire until the horn sounds once and the hazard warning lamps stop blinking.
SYSTEM DESCRIPTION

DIAGNOSIS SYSTEM (BCM)

COMMON ITEM

COMMON ITEM : CONSULT Function (BCM - COMMON ITEM)

APPLICATION ITEM

CONSULT performs the following functions via CAN communication with BCM.

<table>
<thead>
<tr>
<th>Direct Diagnostic Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU Identification</td>
<td>The BCM part number is displayed.</td>
</tr>
<tr>
<td>Self Diagnostic Result</td>
<td>The BCM self diagnostic results are displayed.</td>
</tr>
<tr>
<td>Data Monitor</td>
<td>The BCM input/output data is displayed in real time.</td>
</tr>
<tr>
<td>Active Test</td>
<td>The BCM activates outputs to test components.</td>
</tr>
<tr>
<td>Work support</td>
<td>The settings for BCM functions can be changed.</td>
</tr>
</tbody>
</table>
| Configuration | • The vehicle specification can be read and saved.
 | • The vehicle specification can be written when replacing BCM. |
| CAN Diag Support Mntr | The result of transmit/receive diagnosis of CAN communication is displayed. |

SYSTEM APPLICATION

BCM can perform the following functions:

<table>
<thead>
<tr>
<th>System</th>
<th>Sub System</th>
<th>Direct Diagnostic Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door lock</td>
<td>DOOR LOCK</td>
<td>×</td>
</tr>
<tr>
<td>Rear window defogger</td>
<td>REAR DEFOGGER</td>
<td>×</td>
</tr>
<tr>
<td>Warning chime</td>
<td>BUZZER</td>
<td>×</td>
</tr>
<tr>
<td>Interior room lamp timer</td>
<td>INT LAMP</td>
<td>× × ×</td>
</tr>
<tr>
<td>Exterior lamp</td>
<td>HEADLAMP</td>
<td>× × ×</td>
</tr>
<tr>
<td>Wiper and washer</td>
<td>WIPER</td>
<td>× × ×</td>
</tr>
<tr>
<td>Turn signal and hazard warning lamps</td>
<td>FLASHER</td>
<td>× × ×</td>
</tr>
<tr>
<td>Air conditioner</td>
<td>AIR CONDITIONER</td>
<td>×</td>
</tr>
<tr>
<td>Intelligent Key system</td>
<td>INTELLIGENT KEY</td>
<td>× × × ×</td>
</tr>
<tr>
<td>Combination switch</td>
<td>COMB SW</td>
<td>×</td>
</tr>
<tr>
<td>BCM</td>
<td>BCM</td>
<td>× × × ×</td>
</tr>
<tr>
<td>Immobilizer</td>
<td>IMMU</td>
<td>× × ×</td>
</tr>
<tr>
<td>Interior room lamp battery saver</td>
<td>BATTERY SAVER</td>
<td>×</td>
</tr>
<tr>
<td>Trunk</td>
<td>TRUNK</td>
<td>×</td>
</tr>
<tr>
<td>Vehicle security system</td>
<td>THEFT ALM</td>
<td>× × ×</td>
</tr>
<tr>
<td>RAP system</td>
<td>RETAINED PWR</td>
<td>×</td>
</tr>
<tr>
<td>Signal buffer system</td>
<td>SIGNAL BUFFER</td>
<td>× ×</td>
</tr>
<tr>
<td>TPMS</td>
<td>AIR PRESSURE MONITOR</td>
<td>× × ×</td>
</tr>
</tbody>
</table>

FREEZE FRAME DATA (FFD)

Revision: October 2015
The BCM records the following vehicle condition at the time a particular DTC is detected, and displays it on CONSULT.

<table>
<thead>
<tr>
<th>CONSULT screen item</th>
<th>Indication/Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Speed</td>
<td>km/h</td>
<td>Vehicle speed at the moment a particular DTC is detected</td>
</tr>
<tr>
<td>Odo/Trip Meter</td>
<td>km</td>
<td>Total mileage (Odometer value) at the moment a particular DTC is detected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Condition</th>
<th>Power position status at the moment a particular DTC is detected*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEEP>LOCK</td>
<td>While turning BCM status from low power consumption mode to normal mode (Power supply position is “LOCK”).</td>
</tr>
<tr>
<td>SLEEP>OFF</td>
<td>While turning BCM status from low power consumption mode to normal mode (Power supply position is “OFF”).</td>
</tr>
<tr>
<td>LOCK>ACC</td>
<td>While turning power supply position from “LOCK” to “ACC”.</td>
</tr>
<tr>
<td>ACC>ON</td>
<td>While turning power supply position from “ACC” to “IGN”.</td>
</tr>
<tr>
<td>RUN>ACC</td>
<td>While turning power supply position from “RUN” to “ACC” (Vehicle is stopped and selector lever is in P position).</td>
</tr>
<tr>
<td>CRANK>RUN</td>
<td>While turning power supply position from “CRANKING” to “RUN” (From cranking up the engine to run it).</td>
</tr>
<tr>
<td>RUN>URGENT</td>
<td>While turning power supply position from “RUN” to “ACC” (Emergency stop operation).</td>
</tr>
<tr>
<td>ACC>OFF</td>
<td>While turning power supply position from “ACC” to “OFF”.</td>
</tr>
<tr>
<td>OFF>LOCK</td>
<td>While turning power supply position from “OFF” to “LOCK”.</td>
</tr>
<tr>
<td>OFF>ACC</td>
<td>While turning power supply position from “OFF” to “ACC”.</td>
</tr>
<tr>
<td>ON>CRANK</td>
<td>While turning power supply position from “IGN” to “CRANKING”.</td>
</tr>
<tr>
<td>OFF>SLEEP</td>
<td>While turning BCM status from normal mode (Power supply position is “OFF”.) to low power consumption mode.</td>
</tr>
<tr>
<td>LOCK>SLEEP</td>
<td>While turning BCM status from normal mode (Power supply position is “LOCK”). to low power consumption mode.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Power supply position is “LOCK” (Ignition switch OFF).</td>
</tr>
<tr>
<td>OFF</td>
<td>Power supply position is “OFF” (Ignition switch OFF).</td>
</tr>
<tr>
<td>ACC</td>
<td>Power supply position is “ACC” (Ignition switch ACC).</td>
</tr>
<tr>
<td>ON</td>
<td>Power supply position is “IGN” (Ignition switch ON with engine stopped).</td>
</tr>
<tr>
<td>ENGINE RUN</td>
<td>Power supply position is “RUN” (Ignition switch ON with engine running).</td>
</tr>
<tr>
<td>CRANKING</td>
<td>Power supply position is “CRANKING” (At engine cranking).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGN Counter</th>
<th>0 - 39</th>
<th>The number of times that ignition switch is turned ON after DTC is detected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• The number is 0 when a malfunction is detected now.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number increases like 1 → 2 → 3...38 → 39 after returning to the normal condition whenever ignition is switched OFF → ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number is fixed to 39 until the self-diagnosis results are erased if it is over 39.</td>
</tr>
</tbody>
</table>

NOTE:
*: Power supply position shifts to “LOCK” from “OFF”, when ignition switch is in the OFF position, selector lever is in the P position, and any of the following conditions are met:
• Closing door
• Opening door
• Door is locked using door request switch
• Door is locked using Intelligent Key

The power supply position shifts to “ACC” when the push-button ignition switch (push switch) is pushed at “LOCK”.

AIR PRESSURE MONITOR

AIR PRESSURE MONITOR : CONSULT Function (BCM - AIR PRESSURE MONITOR)

NOTE:
DIAGNOSIS SYSTEM (BCM)

The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.

- Activate and display TPMS transmitter IDs
- Display tire pressure reported by the TPMS transmitter
- Read TPMS DTCs
- Register TPMS transmitter IDs

SELF DIAGNOSTIC RESULT

NOTE:
Before performing Self Diagnostic Result, be sure to register the ID, or else the actual malfunction may be different from that displayed on CONSULT. Refer to BCS-53, "DTC Index".

DATA MONITOR

<table>
<thead>
<tr>
<th>Monitor Item</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR PRESS FL</td>
<td>• Drive vehicle for a few minutes.</td>
<td>Tire pressure (kPa, kg/cm² or Psi)</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ignition switch ON and activation tool is trans-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mitting activation signals.</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS FR</td>
<td>Ignition switch ON</td>
<td>Registration ID: Green</td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td></td>
<td>No registration: Red</td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID REGST FL1</td>
<td>Ignition switch ON</td>
<td></td>
</tr>
<tr>
<td>ID REGST FR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID REGST RR1</td>
<td>Ignition switch ON</td>
<td></td>
</tr>
<tr>
<td>ID REGST RL1</td>
<td>Ignition switch ON</td>
<td></td>
</tr>
<tr>
<td>WARNING LAMP</td>
<td>Ignition switch ON</td>
<td>Low tire pressure warning lamp on: ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low tire pressure warning lamp off: OFF</td>
</tr>
<tr>
<td>BUZZER</td>
<td>Ignition switch ON</td>
<td>Buzzer in combination meter on: ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buzzer in combination meter off: OFF</td>
</tr>
</tbody>
</table>

ACTIVE TEST

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASHER</td>
<td>This test is able to check turn signal lamp operation [Off/LH/RH].</td>
</tr>
<tr>
<td>HORN</td>
<td>This test is able to check horn operation [On].</td>
</tr>
</tbody>
</table>
DIAGNOSIS SYSTEM (TIRE PRESSURE MONITORING SYSTEM)

APPLICATION ITEM

CONSULT performs the following functions via CAN communication with BCM.

<table>
<thead>
<tr>
<th>Diagnosis mode</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU Identification</td>
<td>Parts number of BCM can be read.</td>
</tr>
<tr>
<td>Self Diagnostic Result</td>
<td>Retrieve DTC from ECU and display diagnostic items.</td>
</tr>
<tr>
<td>Self Diagnostic Result</td>
<td>Self-diagnostic results and freeze frame data can be read and erased quickly.*</td>
</tr>
<tr>
<td>Data Monitor</td>
<td>Monitor the input/output signal of the control unit in real time.</td>
</tr>
<tr>
<td>Work support</td>
<td>This mode enables a technician to adjust some devices faster and more accurately.</td>
</tr>
<tr>
<td>Active Test</td>
<td>The BCM activates outputs to test components.</td>
</tr>
<tr>
<td>Re/programming, Configuration</td>
<td>• Read and save the vehicle specification (TYPE ID).</td>
</tr>
<tr>
<td></td>
<td>• Write the vehicle specification (TYPE ID) when replacing BCM.</td>
</tr>
</tbody>
</table>

SELF DIAGNOSTIC RESULT

NOTE:
Before performing Self Diagnostic Result, be sure to register the tire pressure sensor ID or the actual malfunction may be different from that displayed on CONSULT. Refer to BCS-53, "DTC Index".

FREEZE FRAME DATA (FFD)
The following vehicle status is recorded when DTC is detected and is displayed on CONSULT:

<table>
<thead>
<tr>
<th>Item name</th>
<th>Display item</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET AIR PRESSURE 2 FL</td>
<td>Set air pressure 2 front left</td>
</tr>
<tr>
<td>SET AIR PRESSURE 2 FR</td>
<td>Set air pressure 2 front right</td>
</tr>
<tr>
<td>SET AIR PRESSURE 2 RR</td>
<td>Set air pressure 2 rear right</td>
</tr>
<tr>
<td>SET AIR PRESSURE 2 RL</td>
<td>Set air pressure 2 rear left</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE FL</td>
<td>Warning air pressure front left</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE FR</td>
<td>Warning air pressure front right</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE RR</td>
<td>Warning air pressure rear right</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE RL</td>
<td>Warning air pressure rear left</td>
</tr>
<tr>
<td>AIR PRESS FL</td>
<td>Air pressure front left</td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td>Air pressure front right</td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td>Air pressure rear right</td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td>Air pressure rear left</td>
</tr>
<tr>
<td>SET TEMPERATURE</td>
<td>Set temperature</td>
</tr>
<tr>
<td>TIRE TEMPERATURE FL</td>
<td>Tire temperature front left</td>
</tr>
<tr>
<td>TIRE TEMPERATURE FR</td>
<td>Tire temperature front right</td>
</tr>
<tr>
<td>TIRE TEMPERATURE RR</td>
<td>Tire temperature rear right</td>
</tr>
<tr>
<td>TIRE TEMPERATURE RL</td>
<td>Tire temperature rear left</td>
</tr>
</tbody>
</table>

IGN COUNTER (0 - 39)
The number of times that ignition switch is turned ON after the DTC is detected is displayed.
• When "0" is displayed: It indicates that the system is presently malfunctioning.
• When except "0" is displayed: It indicates that system malfunction in the past is detected, but the system is presently normal.

NOTE:
Each time when ignition switch is turned OFF to ON, numerical number increases in 1→2→3…→38→39. When the operation number of times exceeds 39, the number do not increase and "39" is displayed until self diagnosis is erased.

Revision: October 2015

2016 Maxima NAM
< SYSTEM DESCRIPTION >

DATA MONITOR

<table>
<thead>
<tr>
<th>Monitor Item (Unit)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHCL SPEED SE (km/h or mph)</td>
<td>Indicates vehicle speed.</td>
</tr>
<tr>
<td>AIR PRESS FL (kPa, kgf/cm² or Psi)</td>
<td>Indicates air pressure of front LH tire.</td>
</tr>
<tr>
<td>AIR PRESS FR (kPa, kgf/cm² or Psi)</td>
<td>Indicates air pressure of front RH tire.</td>
</tr>
<tr>
<td>AIR PRESS RR (kPa, kgf/cm² or Psi)</td>
<td>Indicates air pressure of rear RH tire.</td>
</tr>
<tr>
<td>AIR PRESS RL (kPa, kgf/cm² or Psi)</td>
<td>Indicates air pressure of rear LH tire.</td>
</tr>
<tr>
<td>LOW TIRE PRESSURE W/L (Off/On)</td>
<td>Indicates condition of low tire pressure warning lamp in combination meter.</td>
</tr>
<tr>
<td>BUZZER 2 (Off/On)</td>
<td>Indicates condition of buzzer in combination meter.</td>
</tr>
<tr>
<td>HORN (Off/On)</td>
<td>Indicates condition of horn.</td>
</tr>
<tr>
<td>HAZARD (Off/On)</td>
<td>Indicates condition of hazard.</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE FL (kPa, kgf/cm² or Psi)</td>
<td>Indicates warning air pressure front LH tire.</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE FR (kPa, kgf/cm² or Psi)</td>
<td>Indicates warning air pressure front RH tire.</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE RR (kPa, kgf/cm² or Psi)</td>
<td>Indicates warning air pressure rear RH tire.</td>
</tr>
<tr>
<td>WARNING AIR PRESSURE RL (kPa, kgf/cm² or Psi)</td>
<td>Indicates warning air pressure rear LH tire.</td>
</tr>
</tbody>
</table>

WORK SUPPORT

<table>
<thead>
<tr>
<th>Support Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID REGIST</td>
<td>Refer to WT-25, "Description".</td>
</tr>
</tbody>
</table>

ACTIVE TEST

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID REGIST WARNING</td>
<td>This test is able to check that the buzzer sounds or the low tire pressure warning lamp turns on.</td>
</tr>
<tr>
<td>WARNING LAMP</td>
<td>This test is able to check that the low tire pressure warning lamp turns on.</td>
</tr>
<tr>
<td>FLASHER</td>
<td>This test is able to check turn signal lamp operation.</td>
</tr>
<tr>
<td>HORN</td>
<td>This test is able to check horn operation [On].</td>
</tr>
</tbody>
</table>
ECU DIAGNOSIS INFORMATION

BCM

List of ECU Reference

<table>
<thead>
<tr>
<th>ECU</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCM</td>
<td>BCS-31, "Reference Value"</td>
</tr>
<tr>
<td></td>
<td>BCS-51, "Fail Safe"</td>
</tr>
<tr>
<td></td>
<td>BCS-52, "DTC Inspection Priority Chart"</td>
</tr>
<tr>
<td></td>
<td>BCS-53, "DTC Index"</td>
</tr>
</tbody>
</table>
TIRE PRESSURE MONITORING SYSTEM CONNECTORS

WT-19

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Connector Name</th>
<th>Connector Type</th>
<th>Connector Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>WIRE TO WIRE</td>
<td>TH60FW-CS16-TM4</td>
<td>WHITE</td>
</tr>
</tbody>
</table>

Connector M4

- **Connector Name:** FUSE BLOCK (J/B)
- **Connector Type:** NS16FR-CS
- **Connector Color:** BROWN

Connector M6

- **Connector Name:** WIRE TO WIRE
- **Connector Type:** TH60FDGY-CS16-TM4
- **Connector Color:** GRAY

Terminal Table

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color of Wire</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12R</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>7P</td>
<td>6R</td>
<td>5R</td>
</tr>
<tr>
<td>16R</td>
<td>15R</td>
<td>14R</td>
</tr>
</tbody>
</table>

Connector M5

- **Connector Name:** FUSE BLOCK (J/B)
- **Connector Type:** NS16FW-CS
- **Connector Color:** WHITE

Connector M12

- **Connector Name:** WIRE TO WIRE
- **Connector Type:** TH40MW-NH
- **Connector Color:** WHITE

Terminal Table

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color of Wire</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8P</td>
<td>9R</td>
<td>-</td>
</tr>
<tr>
<td>8P</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>13P</td>
<td>G</td>
<td>-</td>
</tr>
</tbody>
</table>

Connector M3

- **Connector Name:** FUSE BLOCK (J/B)
- **Connector Type:** CS05FW-M2
- **Connector Color:** WHITE

Connector M12

- **Connector Name:** WIRE TO WIRE
- **Connector Type:** TH40MW-NH
- **Connector Color:** WHITE

Terminal Table

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color of Wire</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8N</td>
<td>LG</td>
<td>-</td>
</tr>
</tbody>
</table>

Wiring Diagram

- Diagram showing connections and labels for each connector.

Revision: October 2015

2016 Maxima NAM
NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

1. COLLECT INFORMATION FROM CUSTOMER
Get detailed information from the customer about the symptom (the condition and the environment when the incident/malfunction occurred).

>> GO TO 2.

2. TIRE AND WHEEL INSPECTION
Check all tires and wheels for physical damage. Refer to WT-63, "Inspection".
Is the inspection result normal?
YES >> GO TO 3.
NO >> Repair or replace as necessary.

3. TIRE PRESSURE INSPECTION
Check the tire pressure for all wheels. Refer to WT-73, "Tire".
Is the inspection result normal?
YES >> GO TO 4.
NO >> Check tire(s), wheel(s) and valve stem(s) for air leaks. Repair or replace as necessary.

4. CHECK LOW TIRE PRESSURE WARNING LAMP
Check that the low tire pressure warning lamp illuminates for approximately 1 second after the ignition switch is turned ON, then turns OFF.
Does the low tire pressure warning lamp turn OFF?
YES >> Inspection End.
NO >> GO TO 5.

5. PERFORM SELF DIAGNOSTIC RESULT
Perform self diagnostic result. Refer to WT-13, "AIR PRESSURE MONITOR : CONSULT Function (BCM - AIR PRESSURE MONITOR)"
Are any DTCs displayed?
YES >> Refer to BCS-53, "DTC Index". If two or more DTCs are displayed, refer to BCS-52, "DTC Inspection Priority Chart".
NO >> GO TO 6.

6. PERFORM DIAGNOSIS APPLICABLE TO THE SYMPTOM
Perform diagnosis applicable to the symptom. Refer to WT-54, "Symptom Table".

>> GO TO 7.

7. FINAL CHECK
Perform self diagnostic result again, and check that the malfunction is repaired. After checking, erase the self diagnosis memory. Refer to WT-13, "AIR PRESSURE MONITOR : CONSULT Function (BCM - AIR PRESSURE MONITOR)".

Revision: October 2015
> Inspection End.
Description

This procedure must be performed after replacement of a tire pressure sensor or BCM.

Work Procedure

TPMS ID registration can be performed using one of the following procedures:

- Transmitter Activation tool [KV48105501 (J-45295-A)] using CONSULT (preferred method)
- Signal Tech II tool [– (J-50190)] with CONSULT (preferred method)
- Signal Tech II tool [– (J-50190)] without CONSULT
- CONSULT only

TPMS REGISTRATION WITH TRANSMITTER ACTIVATION TOOL [KV48105501 (J-45295-A)]

With CONSULT

1. Turn the ignition switch ON.
2. Using CONSULT, select “Work support” in “AIR PRESSURE MONITOR”. Then, select “ID REGIST.”
3. Select “Start” on “ID REGIST” screen.
4. Hold the transmitter activation tool [KV48105501 (J-45295-A)] (1) against the side of the left front tire, near the valve stem.
5. With the tool held at a 0 to 15 degree angle to the tire, press and hold the transmitter activation tool button until the indicator lamp turns OFF (approximately 5 seconds).
6. Repeat steps 4 and 5 for the remaining tires in this order: right front, right rear and left rear.
7. When ID registration is complete, check the following pattern at each wheel.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ID registration position</th>
<th>Turn signal lamp</th>
<th>CONSULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front LH</td>
<td>2 blinks</td>
<td>“Yet (red)” ↓ “Done (green)”</td>
</tr>
<tr>
<td>2</td>
<td>Front RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rear RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear LH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. After the ID registration procedure for all wheels is complete, press “End” on the CONSULT to finish ID registration.
9. Test drive the vehicle to ensure that the TPMS lamp is OFF and no warning messages are present.

TPMS REGISTRATION WITH SIGNAL TECH II TOOL [– (J-50190)]

NOTE:
The Signal Tech II must be updated with the newest software version in order to perform the below procedures. The Signal Tech II software updates can only be downloaded from a CONSULT unit with ASIST. Other versions of ASIST will not show the updates.

With CONSULT

1. Adjust the tire pressure for all tires to the recommended value. Refer to WT-73, "Tire".
2. Turn the ignition switch ON.
3. Using CONSULT, select “Work support” in “AIR PRESSURE MONITOR”. Then, select “ID REGIST.”
4. Select “Start” on “ID REGIST” screen.
5. Turn on the Signal Tech II tool [– (J-50190)].
< BASIC INSPECTION >

ID REGISTRATION PROCEDURE

6. Hold the Signal Tech II against the side of the left front tire, near the valve stem.
7. With the tool held at a 0 to 15 degree angle to the tire, select “Activate Sensor” from the main menu, then press and release the “OK” button to activate the sensor. Once the sensor is activated, the vehicle parking lamps will flash and the sensor ID will appear on the CONSULT screen.
8. Repeat steps 6 and 7 for the remaining tires in this order: right front, right rear and left rear.
9. When ID registration is complete, check the following pattern at each wheel:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ID registration position</th>
<th>Turn signal lamp</th>
<th>CONSULT</th>
</tr>
</thead>
</table>
| 1 | Front LH | 2 blinks | “Yet (red)”
| 2 | Front RH | | “Done (green)”
| 3 | Rear RH | | |
| 4 | Rear LH | | |

10. Once all sensors have been activated, select “End” on the CONSULT to finish ID registration.
11. Test drive the vehicle to ensure that the TPMS lamp is OFF and no warning messages are present.

Without CONSULT
1. Adjust the tire pressure for all tires to the recommended value. Refer to WT-73, "Tire".
2. Turn on the Signal Tech II tool [– (J-50190)] and select “TPMS Check” from the main menu.
3. Select vehicle model and year.
4. When prompted, hold the Signal Tech II against the side of the left front tire, near the valve stem.
5. With the tool held at a 0 to 15 degree angle to the tire, press and release the “OK” button to activate the sensor. Once the sensor is activated, the tool will sound a tone and the tire pressure will be displayed.
6. Repeat steps 4 and 5 for the remaining tires in this order: right front, right rear and left rear.
7. When prompted, connect the tool to the data link connector. The tool will connect to the BCM, read the VIN, read sensor IDs and check for TPMS DTCs. Along with DTCs detected, one of the following will be displayed next to each wheel:
 - N/A - Not applicable because no ID found by the tool
 - OK - Wheel and sensor are in original position
 - NEW - New ID found compared to BCM
 - RT - Wheel has been rotated
 - Low Press - Low tire pressure
8. If no DTC is present or the repair has been completed, press the “OK” button to register the IDs and clear DTCs.
9. Test drive the vehicle to ensure that the TPMS lamp is OFF and no warning messages are present.

TPMS REGISTRATION WITH CONSULT ONLY

With CONSULT
1. Adjust the tire pressure for all wheels to match the list below.

<table>
<thead>
<tr>
<th>Tire position</th>
<th>Tire pressure kPa (kg/cm², psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front LH</td>
<td>240 (2.4, 35)</td>
</tr>
<tr>
<td>Front RH</td>
<td>220 (2.2, 32)</td>
</tr>
<tr>
<td>Rear RH</td>
<td>200 (2.0, 29)</td>
</tr>
<tr>
<td>Rear LH</td>
<td>180 (1.8, 26)</td>
</tr>
</tbody>
</table>
< BASIC INSPECTION >

2. Turn the ignition switch ON.
3. Using CONSULT, select “Work support” in “AIR PRESSURE MONITOR”. Then, select “ID REGIST.”
4. Select “Start” on “ID REGIST” screen.
5. Drive the vehicle at a speed greater than 40 km/h (25 MPH) for 3 minutes or more.
6. After ID registration for all wheels is complete, press “End” on the CONSULT to finish ID registration.

<table>
<thead>
<tr>
<th>ID registration position</th>
<th>CONSULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front LH</td>
<td></td>
</tr>
<tr>
<td>Front RH</td>
<td>“Yet (red)”</td>
</tr>
<tr>
<td>Rear RH</td>
<td>“Done (green)”</td>
</tr>
<tr>
<td>Rear LH</td>
<td></td>
</tr>
</tbody>
</table>

7. Adjust the tire pressures for all tires to the recommended value. Refer to WT-73, “Tire”.
8. Test drive the vehicle to ensure that the TPMS lamp is OFF and no warning messages are present.
NOTE:
• Use “Manual Configuration”.
• If an error occurs during configuration, start over from the beginning.

1. CHECK DATA PART NO. (TYPE ID)
 1. Use FAST (service parts catalog) to search TPMS "DATA PART NO. (TYPE ID)".
 2. Write down "DATA PART NO. (TYPE ID)".

 >> GO TO 2.

2. WRITE CONFIGURATION

 CONSULT Configuration
 1. Select “Manual Configuration” of “AIR PRESSURE MONITOR”.
 2. Select the “DATA PART NO. (TYPE ID)” found using FAST (service parts catalog) to write the “DATA PART NO. (TYPE ID)” into the BCM.

 >> GO TO 3.

3. VERIFY DATA PART NO. (TYPE ID)
 Compare the "DATA PART NO. (TYPE ID)" written into the BCM with the one found using FAST (service parts catalog) to confirm they match.
 Do DATA PART NOs match?
 YES >> GO TO 4.
 NO >> GO TO 2.

4. PERFORM TIRE PRESSURE SENSOR ID REGISTRATION
 Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".

 >> GO TO 5.

5. PERFORM SUPPLEMENTARY WORK
 1. Adjust the tire pressures for all tires to the recommended value. Refer to WT-73, "Tire".
 2. Perform self-diagnosis of all systems.
 3. Erase self-diagnosis results.

 >> Work End.
DTC/CIRCUIT DIAGNOSIS

C1704, C1705, C1706, C1707 LOW TIRE PRESSURE

DTC Description

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
* Activate and display TPMS sensor IDs
* Display tire pressure reported by the TPMS sensor
* Read TPMS DTCs
* Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1704</td>
<td>LOW PRESSURE FL (Low tire pressure front left)</td>
<td>Diagnosis condition: When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal): Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold: Tire pressure drops to 193.1 kPa (1.9 kg/cm², 28 psi) or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time: –</td>
</tr>
<tr>
<td>C1705</td>
<td>LOW PRESSURE FR (Low tire pressure front right)</td>
<td>Diagnosis condition: When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal): Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold: Tire pressure drops to 193.1 kPa (1.9 kg/cm², 28 psi) or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time: –</td>
</tr>
<tr>
<td>C1706</td>
<td>LOW PRESSURE RR (Low tire pressure rear right)</td>
<td>Diagnosis condition: When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal): Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold: Tire pressure drops to 193.1 kPa (1.9 kg/cm², 28 psi) or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time: –</td>
</tr>
<tr>
<td>C1707</td>
<td>LOW PRESSURE RL (Low tire pressure rear left)</td>
<td>Diagnosis condition: When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal): Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold: Tire pressure drops to 193.1 kPa (1.9 kg/cm², 28 psi) or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time: –</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

- Low tire pressure
- Tire pressure sensor

DTC CONFIRMATION PROCEDURE

1. **PERFORM SELF DIAGNOSTIC RESULT**

 CONSULT
 1. Check tire pressure for all wheels and adjust to the specified value. Refer to WT-73, "Tire".
 2. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
 3. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
 4. Check DTC.

Is DTC C1704, C1705, C1706, or C1707 detected?

- **YES** >> Proceed to WT-30, "Diagnosis Procedure".
- **NO** >> Inspection End.
NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech
II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

1. TIRE PRESSURE SENSOR ID REGISTRATION

Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".

Can the tire pressure sensor ID registration be completed?

YES >> GO TO 2.
NO >> Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation".

2. CHECK TIRE PRESSURE

Check the air pressure of all wheels. Refer to WT-73, "Tire".

Is the inspection result normal?

YES >> Perform DTC CONFIRMATION PROCEDURE again. Refer to WT-29, "DTC Description".
NO >> GO TO 3.

3. CHECK TIRE PRESSURE SIGNAL

With CONSULT
1. Adjust tire pressure for all wheels to the specified value. Refer to WT-73, "Tire".
2. Select “Data Monitor” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check that the air pressures match the specified value.

<table>
<thead>
<tr>
<th>Monitor item</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR PRESS FL</td>
<td>Approximately equal to value indicated on tire gauge for front LH tire</td>
</tr>
<tr>
<td>AIR PRESS FR</td>
<td>Approximately equal to value indicated on tire gauge for front RH tire</td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td>Approximately equal to value indicated on tire gauge for rear RH tire</td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td>Approximately equal to value indicated on tire gauge for rear LH tire</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> Inspection End.
NO >> Repair or replace malfunctioning components.
C1708, C1709, C1710, C1711 TIRE PRESSURE SENSOR

< DTC/CIRCUIT DIAGNOSIS >

C1708, C1709, C1710, C1711 TIRE PRESSURE SENSOR

DTC Description

NOTE:
The Signal Tech II Tool [- (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.

- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1708 [NO – DATA] – FL (No data front left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal (terminal)</td>
<td>• Remote keyless entry receiver power circuit (terminal 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remote keyless entry receiver signal circuit (terminal 2)</td>
</tr>
<tr>
<td></td>
<td>Threshold</td>
<td>Tire pressure data signal from the front LH wheel tire pressure sensor cannot be detected for more than 10 minutes of driving above 40 km/h (25 MPH).</td>
</tr>
<tr>
<td></td>
<td>Diagnosis delay time</td>
<td></td>
</tr>
<tr>
<td>C1709 [NO – DATA] – FR (No data front right)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal (terminal)</td>
<td>• Remote keyless entry receiver power circuit (terminal 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remote keyless entry receiver signal circuit (terminal 2)</td>
</tr>
<tr>
<td></td>
<td>Threshold</td>
<td>Tire pressure data signal from the front RH wheel tire pressure sensor cannot be detected for more than 10 minutes of driving above 40 km/h (25 MPH).</td>
</tr>
<tr>
<td></td>
<td>Diagnosis delay time</td>
<td></td>
</tr>
<tr>
<td>C1710 [NO – DATA] – RR (No data rear right left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal (terminal)</td>
<td>• Remote keyless entry receiver power circuit (terminal 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remote keyless entry receiver signal circuit (terminal 2)</td>
</tr>
<tr>
<td></td>
<td>Threshold</td>
<td>Tire pressure data signal from the rear RH wheel tire pressure sensor cannot be detected for more than 10 minutes of driving above 40 km/h (25 MPH).</td>
</tr>
<tr>
<td></td>
<td>Diagnosis delay time</td>
<td></td>
</tr>
<tr>
<td>C1711 [NO – DATA] – RL (No data rear left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal (terminal)</td>
<td>• Remote keyless entry receiver power circuit (terminal 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remote keyless entry receiver signal circuit (terminal 2)</td>
</tr>
<tr>
<td></td>
<td>Threshold</td>
<td>Tire pressure data signal from the rear LH wheel tire pressure sensor cannot be detected for more than 10 minutes of driving above 40 km/h (25 MPH).</td>
</tr>
<tr>
<td></td>
<td>Diagnosis delay time</td>
<td></td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

Revision: October 2015

2016 Maxima NAM
C1708, C1709, C1710, C1711 TIRE PRESSURE SENSOR

< DTC/CIRCUIT DIAGNOSIS >

- Driving in area with radio interference.
- ID registration incomplete
- Tire pressure sensor
- Harness or connectors
- Remote keyless entry receiver
- BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

 With CONSULT
 1. Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".
 2. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
 NOTE:
 Avoid driving in areas with radio interference.
 3. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
 4. Check DTC.

 Is DTC C1708, C1709, C1710, or C1711 detected?
 YES >> Proceed to WT-32, "Diagnosis Procedure".
 NO >> Inspection End.

Diagnosis Procedure

NOTE:
The Signal Tech II Tool [- (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
 • Activate and display TPMS sensor IDs
 • Display tire pressure reported by the TPMS sensor
 • Read TPMS DTCs
 • Register TPMS sensor IDs

Regarding Wiring Diagram information, refer to WT-18, "Wiring Diagram".

1. CHECK TIRE PRESSURE SIGNAL

 With CONSULT
 1. Select “Data Monitor” mode in “AIR PRESSURE MONITOR” of “BCM”.
 2. Check that the air pressures match the specified value.

<table>
<thead>
<tr>
<th>Monitor item</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR PRESS FL</td>
<td>Approximately equal to specified value. Refer to WT-73, "Tire".</td>
</tr>
<tr>
<td>AIR PRESS FR</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td></td>
</tr>
</tbody>
</table>

Are all tire pressures displayed 0 kPa (psi)?
 YES >> GO TO 2.
 NO >> Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation".

2. CHECK REMOTE KEYLESS ENTRY RECEIVER POWER CIRCUIT

Check voltage between remote keyless entry receiver connector M27 terminal 1 and ground.

<table>
<thead>
<tr>
<th>Remote keyless entry receiver</th>
<th>Ground</th>
<th>Voltage (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>M27</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

Is the inspection result normal?
C1708, C1709, C1710, C1711 TIRE PRESSURE SENSOR

< DTC/CIRCUIT DIAGNOSIS >

YES >> GO TO 3.
NO >> Repair or replace harness or connectors.

3. CHECK REMOTE KEYLESS ENTRY RECEIVER SIGNAL

1. Turn ignition switch ON.
2. Check signal between remote keyless entry receiver connector M27 terminal 2 and ground with an oscilloscope.

<table>
<thead>
<tr>
<th>Remote keyless entry receiver</th>
<th>Condition</th>
<th>Voltage (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Terminal</td>
<td>Standby state</td>
</tr>
<tr>
<td>M27</td>
<td>2</td>
<td>When receiving the signal from the tire pressure sensor</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 6.
NO >> GO TO 4.

4. CHECK REMOTE KEYLESS ENTRY RECEIVER SIGNAL CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect BCM connector M18 and remote keyless entry receiver connector.
3. Check continuity between BCM connector M18 terminal 119 and remote keyless entry receiver connector M27 terminal 2.

<table>
<thead>
<tr>
<th>BCM</th>
<th>Remote keyless entry receiver</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M18</td>
<td>119</td>
<td>M27</td>
</tr>
</tbody>
</table>

4. Check continuity between BCM connector M18 terminal 119 and ground.

<table>
<thead>
<tr>
<th>BCM</th>
<th>Terminal</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M18</td>
<td>119</td>
<td>—</td>
<td>No</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 5.
NO >> Repair or replace harness or connectors.

5. CHECK REMOTE KEYLESS ENTRY RECEIVER GROUND CIRCUIT

Check continuity between remote keyless entry receiver connector M27 terminal 3 and ground.
C1708, C1709, C1710, C1711 TIRE PRESSURE SENSOR

< DTC/CIRCUIT DIAGNOSIS >

<table>
<thead>
<tr>
<th>Connector</th>
<th>Terminal</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M27</td>
<td>3</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES >> Replace the remote keyless entry receiver. Refer to DLK-202, "Removal and Installation".
NO >> Repair or replace harness or connectors.

6. TIRE PRESSURE SENSOR ID REGISTRATION

Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".
Can the tire pressure sensor ID registration be completed?
YES >> GO TO 7.
NO >> Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation".

7. RECHECK TIRE PRESSURE SIGNAL

With CONSULT
1. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
2. Select “Data Monitor” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check that the air pressures match the specified value.

<table>
<thead>
<tr>
<th>Monitor item</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR PRESS FL</td>
<td>Approximately equal to specified value. Refer to WT-73, "Tire".</td>
</tr>
<tr>
<td>AIR PRESS FR</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td></td>
</tr>
</tbody>
</table>

Does Data Monitor display specified value without turning tire pressure warning lamp ON?
YES >> Inspection End.
NO >> Replace BCM. Refer to BCS-82, "Removal and Installation".

Revision: October 2015

WT-34 2016 Maxima NAM
NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1716</td>
<td>[PRESSUREDATA ERR] FL (Pressure data error front left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire pressure data from the front LH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
<tr>
<td>C1717</td>
<td>[PRESSUREDATA ERR] FR (Pressure data error front right)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire pressure data from the front RH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
<tr>
<td>C1718</td>
<td>[PRESSUREDATA ERR] RR (Pressure data error rear right)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire pressure data from the rear RH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
<tr>
<td>C1719</td>
<td>[PRESSUREDATA ERR] RL (Pressure data error rear left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire pressure data from the rear LH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE
• Excessive tire pressure
• ID registration incomplete
• Tire pressure sensor
• BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT
1. Check tire pressure for all wheels and adjust to the specified value. Refer to WT-73, "Tire".
2. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
3. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
4. Check DTC.

Is DTC C1716, C1717, C1718, or C1719 detected?
YES >> Proceed to WT-36, "Diagnosis Procedure".
NO >> Inspection End.
C1716, C1717, C1718, C1719 TIRE PRESSURE SENSOR

< DTC/CIRCUIT DIAGNOSIS >

Diagnosis Procedure

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

1. TIRE PRESSURE SENSOR ID REGISTRATION

Perform tire pressure sensor ID registration. Refer to WT-25, “Work Procedure”.
Can the tire pressure sensor ID registration be completed?

YES >> GO TO 2.
NO >> Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation”.

2. CHECK TIRE PRESSURE SIGNAL

With CONSULT
1. Adjust tire pressure for all wheels to the specified value. Refer to WT-73, "Tire”.
2. Select “Data Monitor” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check that the air pressures match the specified value.

<table>
<thead>
<tr>
<th>Monitor item</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR PRESS FL</td>
<td>Approximately equal to specified value. Refer to WT-73, "Tire".</td>
</tr>
<tr>
<td>AIR PRESS FR</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td></td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> Inspection End.
NO >> Replace BCM. Refer to BCS-82, "Removal and Installation".
C1729 VEHICLE SPEED SIGNAL

DTC Description

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

DTC DETECTION LOGIC

POSSIBLE CAUSE
- CAN communication
- Combination meter
- BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

 - WITH CONSULT
 1. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
 2. Perform "Self Diagnostic Result" mode in “AIR PRESSURE MONITOR” of “BCM”.
 3. Check DTC.

 Is DTC C1729 detected?
 YES >> Proceed to WT-37, "Diagnosis Procedure".
 NO >> Inspection End.

Diagnosis Procedure

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

1. PERFORM SELF DIAGNOSTIC RESULT FOR COMBINATION METER

 - WITH CONSULT
 Perform “Self Diagnostic Result” of “METER M&A”. Refer to MWI-20, "CONSULT Function (METER/M&A)".

 Are any DTCs detected?
 YES >> Refer to MWI-29, "DTC Index".
 NO >> GO TO 2.

2. CHECK BCM INPUT/OUTPUT SIGNAL

 Check BCM input/output signal values. Refer to BCS-31, "Reference Value".
C1729 VEHICLE SPEED SIGNAL

< DTC/CIRCUIT DIAGNOSIS >

Is the inspection result normal?

YES >> Check pin terminal and connection of each harness connector for malfunctioning conditions.
NO >> Replace the BCM. Refer to BCS-82, "Removal and Installation".
NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1730</td>
<td>FLAT TIRE FL (–)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Front left wheel pressure is 70 kPa (0.7 kg/cm², 10 psi) or less.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>C1731</td>
<td>FLAT TIRE FR (–)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Front right wheel pressure is 70 kPa (0.7 kg/cm², 10 psi) or less.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>C1732</td>
<td>FLAT TIRE RR (–)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear right wheel pressure is 70 kPa (0.7 kg/cm², 10 psi) or less.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>C1733</td>
<td>FLAT TIRE RL (–)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tire pressure sensor signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear left wheel pressure is 70 kPa (0.7 kg/cm², 10 psi) or less.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE
- Low tire pressure
- Tire pressure sensor

DTC CONFIRMATION PROCEDURE
1. PERFORM SELF DIAGNOSTIC RESULT

\[\text{With CONSULT}\]
1. Check tire pressure for all wheels and adjust to the specified value. Refer to WT-73, "Tire".
2. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
3. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
4. Check DTC.

Is DTC C1730, C1731, C1732, or C1733 detected?
YES >> Proceed to WT-40, "Diagnosis Procedure".
NO >> Inspection End.
NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

1. TIRE PRESSURE SENSOR ID REGISTRATION
Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".
Can the tire pressure sensor ID registration be completed?
YES >> GO TO 2.
NO >> Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation".

2. CHECK TIRE PRESSURE
Check the air pressure of all wheels. Refer to WT-73, "Tire".
Is the inspection result normal?
YES >> Perform DTC CONFIRMATION PROCEDURE again. Refer to WT-39, "DTC Description".
NO >> GO TO 3.

3. CHECK TIRE PRESSURE SIGNAL

With CONSULT
1. Adjust tire pressure for all wheels to the specified value. Refer to WT-73, "Tire".
2. Select “Data Monitor” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check that the air pressures match the specified value.

<table>
<thead>
<tr>
<th>Monitor item</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR PRESS FL</td>
<td>Approximately equal to value indicated on tire gauge for front LH tire</td>
</tr>
<tr>
<td>AIR PRESS FR</td>
<td>Approximately equal to value indicated on tire gauge for front RH tire</td>
</tr>
<tr>
<td>AIR PRESS RR</td>
<td>Approximately equal to value indicated on tire gauge for rear RH tire</td>
</tr>
<tr>
<td>AIR PRESS RL</td>
<td>Approximately equal to value indicated on tire gauge for rear LH tire</td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES >> Inspection End.
NO >> Repair or replace malfunctioning components.
C1734 CONTROL UNIT

DTC Description

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1734</td>
<td>CONTROL UNIT (Control unit)</td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold TPMS malfunction in BCM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT
1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC C1734 detected?

YES >> Proceed to WT-41, "Diagnosis Procedure".

NO >> Inspection End.

Diagnosis Procedure

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

Regarding Wiring Diagram information, refer to WT-18, "Wiring Diagram".

1. CHECK BCM HARNESS CONNECTORS

Check BCM harness connectors for damage or loose connections.

Is the inspection result normal?

YES >> Repair or replace connectors.

NO >> GO TO 2.

2. CHECK BCM POWER SUPPLY AND GROUND

Check BCM power supply and ground. Refer to BCS-75, "Diagnosis Procedure".

Is the inspection result normal?

YES >> GO TO 3.

Revision: October 2015
C1734 CONTROL UNIT

< DTC/CIRCUIT DIAGNOSIS >

NO >> Repair or replace harness or connectors.

3. CHECK REMOTE KEYLESS ENTRY RECEIVER POWER CIRCUIT

Check voltage between remote keyless entry receiver connector M27 terminal 1 and ground.

<table>
<thead>
<tr>
<th>Remote keyless entry receiver</th>
<th>Ground</th>
<th>Voltage (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>M27</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.

NO >> Repair or replace harness or connectors.

4. CHECK REMOTE KEYLESS ENTRY RECEIVER SIGNAL CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect BCM connector M18 and remote keyless entry receiver connector.
3. Check continuity between BCM connector M18 terminal 119 and remote keyless entry receiver connector M27 terminal 2.

<table>
<thead>
<tr>
<th>BCM</th>
<th>Remote keyless entry receiver</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Terminal</td>
<td>Connector</td>
</tr>
<tr>
<td>M18</td>
<td>119</td>
<td>M27</td>
</tr>
</tbody>
</table>

4. Check continuity between BCM connector M18 terminal 119 and ground.

<table>
<thead>
<tr>
<th>BCM</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>M18</td>
<td>119</td>
<td>—</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 5.

NO >> Repair or replace harness or connectors.

5. CHECK REMOTE KEYLESS ENTRY RECEIVER GROUND CIRCUIT

Check continuity between remote keyless entry receiver connector M27 terminal 3 and ground.

<table>
<thead>
<tr>
<th>Remote keyless entry receiver</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>M27</td>
<td>3</td>
<td>—</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 6.

NO >> Repair or replace harness or connectors.

6. CHECK BCM INPUT/OUTPUT SIGNALS

Check BCM input/output signals. Refer to BCS-31, "Reference Value".

Is the inspection result normal?

YES >> Inspection End.

NO >> Replace BCM. Refer to BCS-82, "Removal and Installation".

Revision: October 2015

2016 Maxima NAM
C1735 IGNITION SIGNAL

DTC Logic

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1735</td>
<td>IGNITION SIGNAL LINE - BCM/TPMS (—)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCM has detected a mismatch between IGN ON signals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT

1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC C1735 detected?

YES >> Proceed to WT-43, "Diagnosis Procedure”.

NO >> Inspection End.

Diagnosis Procedure

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

1. CHECK CAN IGNITION SIGNAL

With CONSULT

1. Select “INTELLIGENT KEY” of “BCM”.
2. Select “IGN RLY1-F/B” in “Data Monitor” mode.
3. Check that the function operates normally according to the following conditions:

<table>
<thead>
<tr>
<th>Monitor item</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN RLY1 F/B</td>
<td>On with ignition in ON position</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 2.

NO >> Check CAN system. Refer to LAN-17, "Trouble Diagnosis Flow Chart".
2.CHECK BCM POWER SUPPLY AND GROUND

Check BCM power supply and ground. Refer to BCS-75, "Diagnosis Procedure".

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair or replace harness or connectors.

3.DRIVE VEHICLE

Clear DTC and test drive vehicle to check for low tire pressure warning lamp.

Does the vehicle operate without any low tire pressure warning lamp?

YES >> Inspection End.
NO >> Replace BCM. Refer to BCS-82, "Removal and Installation".
DTC Description

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.

- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1761</td>
<td>TEMPERATURE DATA FL (Temperature data front left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Temperature data signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire temperature data from the front LH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
<tr>
<td>C1762</td>
<td>TEMPERATURE DATA FR (Temperature data front right)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Temperature data signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire temperature data from the front RH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
<tr>
<td>C1763</td>
<td>TEMPERATURE DATA RR (Temperature data rear right)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Temperature data signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire temperature data from the rear RH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
<tr>
<td>C1764</td>
<td>TEMPERATURE DATA RL (Temperature data rear left)</td>
<td>Diagnosis condition When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal) Temperature data signal (–).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold Malfunction in the tire temperature data from the rear LH wheel tire pressure sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time –</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

- Tire pressure sensor
- BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT

1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC “C1761”, “C1762”, “C1763”, or “C1764” detected?

- YES >> Proceed to WT-46, ”Diagnosis Procedure”.
- NO-1 >> Prior to repair: Refer to GI-41, ”Intermittent Incident”.
- NO-2 >> Confirmation after repair: Inspection End.

Diagnosis Procedure

NOTE:

Revision: October 2015
C1761, C1762, C1763, C1764 TIRE PRESSURE SENSOR

The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.

- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

1. PERFORM BCM SELF-DIAGNOSIS

1. Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation".
2. Select "Self Diagnostic Result" mode in "AIR PRESSURE MONITOR" of "BCM".
3. Check DTC.

Is DTC "C1761", "C1762", "C1763", or "C1764" detected?

YES >> Replace BCM. Refer to BCS-82, "Removal and Installation".
NO >> Inspection End.
C1769 CONFIGURATION SETTING

DTC Description

NOTE:
The Signal Tech II Tool [- (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1769</td>
<td>CONFIG SETTING (Configuration setting)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tire Pressure Monitoring System (TPMS) configuration has not been performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Receiver ID registration cannot be performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE
- Configuration is not completed.
- The ID registration is not completed.

DTC CONFIRMATION PROCEDURE

1. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT
1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC “C1769” detected?

YES >> Proceed to WT-47, "Diagnosis Procedure".
NO-1 >> Prior to repair: Refer to GI-41, "Intermittent Incident".
NO-2 >> Confirmation after repair: Inspection End.

Diagnosis Procedure

NOTE:
The Signal Tech II Tool [- (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

1. TIRE PRESSURE MONITORING SYSTEM CONFIGURATION

Perform configuration. Refer to WT-28, "Work Procedure".

>> GO TO 2.

2. TIRE PRESSURE SENSOR ID REGISTRATION

Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".

Does low tire pressure warning lamp turn OFF?
C1769 CONFIGURATION SETTING

< DTC/CIRCUIT DIAGNOSIS >

YES >> Inspection End.
NO >> Perform configuration of TPMS again. Refer to WT-28, "Work Procedure".
C1770, C1771, C1772, C1773 G SENSOR

DTC Description

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.

• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1770</td>
<td>G SENSOR FL (G sensor front left)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malfunction in the G sensor data from front LH wheel sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td>C1771</td>
<td>G SENSOR FR (G sensor front right)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malfunction in the G sensor data from front RH wheel sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td>C1772</td>
<td>G SENSOR RL (G sensor rear right)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malfunction in the G sensor data from rear RH wheel sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td>C1773</td>
<td>G SENSOR RR (G sensor rear left)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malfunction in the G sensor data from rear LH wheel sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
</tbody>
</table>

NOTE:
The actual malfunction part may differ from the malfunction part which DTC shows if ID registration is not performed after performing tire rotation or tire/road wheel replacement.

POSSIBLE CAUSE
Tire pressure sensor

DTC CONFIRMATION PROCEDURE

1. Perform self diagnostic result

With CONSULT
1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC “C1770”, “C1771”, “C1772”, or “C1773” detected?

YES >> Proceed to WT-50, “Diagnosis Procedure”.
NO-1 >> Prior to repair: Refer to GI-41, “Intermittent Incident”.
NO-2 >> Confirmation after repair: Inspection End.
NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.
• Activate and display TPMS sensor IDs
• Display tire pressure reported by the TPMS sensor
• Read TPMS DTCs
• Register TPMS sensor IDs

1. PERFORM BCM SELF-DIAGNOSIS
1. Replace tire pressure sensor. Refer to WT-68, "Removal and Installation".
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC “C1770”, “C1771”, “C1772”, or “C1773” detected?

YES >> Replace the BCM. Refer to BCS-82, "Removal and Installation".
NO >> Inspection End.
U1000 CAN COMM CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

U1000 CAN COMM CIRCUIT

Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN-H line, CAN-L line) allowing a high rate of information transmission with less wiring. Each control unit communicates data but selectively reads required data only.

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1000</td>
<td>CAN COMM CIRCUIT (CAN communication circuit)</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

• CAN communication malfunction
• Malfunction of BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM DTC CONFIRMATION

 With CONSULT
 1. Drive for several minutes at a speed of 40 km/h (25 MPH) or more.
 2. Stop the vehicle.
 3. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
 4. Check DTC.

 Is DTC “U1000” detected?
 YES >> Proceed to WT-51, "Diagnosis Procedure".
 NO-1 >> Prior to repair: Refer to GI-41, "Intermittent Incident".
 NO-2 >> Confirmation after repair: Inspection End.

Diagnosis Procedure

1. PERFORM SELF DIAGNOSTIC RESULT

 With CONSULT
 1. Turn the ignition switch ON and wait for 2 seconds or more.
 2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
 3. Check DTC.

 Is DTC “U1000” detected?
 YES >> Refer to LAN-30, "CAN COMMUNICATION SYSTEM : CAN System Specification Chart".
 NO >> Inspection End.
U1010 CONTROL UNIT (CAN)

Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN-H line, CAN-L line) allowing a high rate of information transmission with less wiring. Each control unit communicates data but selectively reads required data only.

DTC DETECTION LOGIC

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>CONSULT screen terms (Trouble diagnosis content)</th>
<th>DTC detection condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1010</td>
<td>CONTROL UNIT (CAN) [Control unit (CAN)]</td>
<td>Diagnosis condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When ignition switch is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (terminal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAN communication signal (terminal 59 and 60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error detected during the initial diagnosis of CAN controller of BCM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis delay time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

BCM

DTC CONFIRMATION PROCEDURE

1. PERFORM DTC CONFIRMATION

With CONSULT
1. Drive for several minutes at a speed of 40 km/h (25 MPH) or more.
2. Stop the vehicle.
3. Perform “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
4. Check DTC.

Is DTC “U1010” detected?

YES >> Proceed to WT-52, "Diagnosis Procedure".
NO-1 >> Prior to repair: Refer to GI-41, "Intermittent Incident".
NO-2 >> Confirmation after repair: Inspection End.

Diagnosis Procedure

1. CHECK BCM

Check BCM harness connector for disconnection or deformation.

Is the inspection result normal?

YES >> Replace BCM. Refer to BCS-82, "Removal and Installation".
NO >> Repair or replace malfunctioning components.
LOW TIRE PRESSURE WARNING LAMP

< DTC/CIRCUIT DIAGNOSIS >

LOW TIRE PRESSURE WARNING LAMP

Component Function Check

1. CHECK THE ILLUMINATION OF THE LOW TIRE PRESSURE WARNING LAMP

Check that the low tire pressure warning lamp is turned OFF after illuminating for approximately 1 second, when the ignition switch is turned ON.

Is the inspection result normal?
- YES >> Inspection End.
- NO >> Perform trouble diagnosis. Refer to WT-53, "Diagnosis Procedure".

Diagnosis Procedure

1. BCM POWER SUPPLY AND GROUND CIRCUIT

Check BCM power supply and ground circuit. Refer to BCS-75, "Diagnosis Procedure".

Is the inspection result normal?
- YES >> GO TO 2.
- NO >> Repair or replace malfunctioning components.

2. PERFORM SELF-DIAGNOSIS

With CONSULT

Perform “Self Diagnostic Result” of “AIR PRESSURE MONITOR” in “BCM”.

Is any DTC detected?
- YES >> Check the DTC. Refer to BCS-53, "DTC Index".
- NO >> GO TO 3.

3. CHECK LOW TIRE PRESSURE WARNING LAMP SIGNAL

With CONSULT

1. Turn the ignition switch ON.

 CAUTION:

 Never start the engine.

2. Select “Data Monitor” in “AIR PRESSURE MONITOR” of “BCM”.
3. Select “WARNING LAMP” in “Data Monitor”, and check that the low tire pressure warning lamp is turned OFF after illuminating for approximately 1 second, when the ignition switch is turned ON.

Is the inspection result normal?
- YES >> Check the combination meter. Refer to MWI-50, "COMBINATION METER : Diagnosis Procedure".
- NO >> Replace the BCM. Refer to BCS-82, "Removal and Installation".
TPMS

SYMPTOM DIAGNOSIS

TPMS

Symptom Table

LOW TIRE PRESSURE WARNING LAMP SYMPTOM CHART

<table>
<thead>
<tr>
<th>Diagnosis items</th>
<th>Low tire pressure warning lamp</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low tire pressure warning lamp</td>
<td></td>
<td>Wake-up operation for all tire pressure sensors at wheels is completed.</td>
<td>No system malfunctions</td>
</tr>
<tr>
<td>The low tire pressure warning lamp illuminates for 1 second, then turns OFF.</td>
<td></td>
<td>Wake-up operation for all tire pressure sensors at wheels is completed.</td>
<td>Perform the ID registration for all tire pressure sensors at wheels. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>The low tire pressure warning lamp repeats blinking ON for 2 seconds and OFF for 0.2 seconds. 1 minute later, low tire pressure warning lamp turns ON.</td>
<td></td>
<td>The front left tire pressure sensor is not activated.</td>
<td>Perform the ID registration for the tire pressure sensor at front left wheel. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>The low tire pressure warning lamp blinks once. 1 minute later, low tire pressure warning lamp turns ON.</td>
<td></td>
<td>The front right tire pressure sensor is not activated.</td>
<td>Perform the ID registration for the tire pressure sensor at front right wheel. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>The low tire pressure warning lamp repeats blinking twice. 1 minute later, low tire pressure warning lamp turns ON.</td>
<td></td>
<td>The rear right tire pressure sensor is not activated.</td>
<td>Perform the ID registration for the tire pressure sensor at rear right wheel. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>The low tire pressure warning lamp repeats blinking for 3 times. 1 minute later, low tire pressure warning lamp turns ON.</td>
<td></td>
<td>The rear left tire pressure sensor is not activated.</td>
<td>Perform the ID registration for the tire pressure sensor at rear left wheel. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>The low tire pressure warning lamp repeats blinking for 4 times. 1 minute later, low tire pressure warning lamp turns ON.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
< SYMPTOM DIAGNOSIS >

<table>
<thead>
<tr>
<th>Diagnosis items</th>
<th>Symptom (Ignition switch ON)</th>
<th>Low tire pressure warning lamp</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low tire pressure warning lamp</td>
<td>The low tire pressure warning lamp turns ON and stays illuminated.</td>
<td>Comes ON and stays ON</td>
<td>Low tire pressure</td>
<td>Check the tire pressure for all wheels and adjust to the specified value. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>Low tire pressure warning lamp</td>
<td>The low tire pressure warning lamp repeats blinking at 0.5-second intervals for 1 minute, and then stays illuminated.</td>
<td>Blinks 1 min ON 0.5 sec > OFF 0.5 sec and stays ON</td>
<td>The combination meter fuse is open or removed (or pulled out).</td>
<td>Check and install the combination meter fuse. If necessary, replace the fuse.</td>
</tr>
<tr>
<td>Low tire pressure warning lamp</td>
<td>The low tire pressure warning lamp blinks once.</td>
<td>Blinks 4 times ON 0.3 sec > OFF 0.3 sec and stays ON</td>
<td>Wake-up operation for all tire pressure sensors at wheels is not completed.</td>
<td>Perform the ID registration for all tire pressure sensors at wheels. Refer to WT-25, "Work Procedure".</td>
</tr>
<tr>
<td>Hazard warning lamp</td>
<td>The hazard warning lamp does not blink twice when the tire pressure sensor is activated. Or the buzzer does not sound.</td>
<td>-</td>
<td>The tire pressure sensor activation tool does not activate.</td>
<td>Replace the battery in the tire pressure sensor activation tool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The ignition switch is OFF when the tire pressure sensor wake-up operation is performed.</td>
<td>Turn the ignition switch ON when performing the tire pressure sensor wake-up operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The tire pressure sensor activation tool is not used in the correct position.</td>
<td>Operate the tire pressure sensor activation tool in the correct position when performing the wake-up operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The tire pressure sensor is already awake.</td>
<td>No procedure.</td>
</tr>
</tbody>
</table>

NOTE:
If tire pressure sensor wake-up operation is not completed for two or more tire pressure sensors, the applicable low tire pressure warning lamp blinking patterns are displayed continuously. (Example: Blinks once/OFF/blinks 3 times = Wake-up operation is not completed at the front left wheel and rear right wheel tire pressure sensors.)
LOW TIRE PRESSURE WARNING LAMP DOES NOT TURN ON

< SYMPTOM DIAGNOSIS >

LOW TIRE PRESSURE WARNING LAMP DOES NOT TURN ON

Low Tire Pressure Warning Lamp Does Not Come On When Ignition Switch Is Turned On

NOTE:
The Signal Tech II Tool [– (J-50190)] can be used to perform the following functions. Refer to the Signal Tech II User Guide for additional information.

- Activate and display TPMS sensor IDs
- Display tire pressure reported by the TPMS sensor
- Read TPMS DTCs
- Register TPMS sensor IDs

1. PERFORM SELF DIAGNOSTIC RESULT

⚠️ With CONSULT
1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Is DTC U1000 detected?

YES ➯ Refer to LAN-17, "Trouble Diagnosis Flow Chart".
NO ➯ GO TO 2.

2. CHECK COMBINATION METER

Check combination meter operation. Refer to MWI-20, "CONSULT Function (METER/M&A)".

Is the inspection result normal?

YES ➯ GO TO 3.
NO ➯ Replace combination meter. Refer to MWI-68, "Removal and Installation".

3. CHECK LOW TIRE PRESSURE WARNING LAMP

Disconnect BCM harness connector.

Does the low tire pressure warning lamp activate?

YES ➯ Replace BCM. Refer to BCS-82, "Removal and Installation".
NO ➯ Check combination meter operation.
LOW TIRE PRESSURE WARNING LAMP STAYS ON

1. CHECK BCM CONNECTORS
 1. Turn ignition switch OFF.
 2. Disconnect BCM connectors.
 3. Check terminals for damage or loose connections.
 Is the inspection result normal?
 YES >> GO TO 2.
 NO >> Repair or replace damaged connectors.

2. BCM POWER SUPPLY AND GROUND CIRCUITS
 Check BCM power supply and ground circuits. Refer to BCS-75, "Diagnosis Procedure".
 Is the inspection result normal?
 YES >> Replace BCM. Refer to BCS-82, "Removal and Installation".
 NO >> Repair BCM circuits.
LOW TIRE PRESSURE WARNING LAMP BLINKS

< SYMPTOM DIAGNOSIS >

LOW TIRE PRESSURE WARNING LAMP BLINKS

Description

When the ignition switch is turned ON, the low tire pressure warning lamp blinks. And then 1 minute later, low tire pressure warning lamp turns ON.

NOTE:
The position of an inactive tire pressure sensor can be identified by checking the blinking timing of the low tire pressure warning lamp.

<table>
<thead>
<tr>
<th>Low tire pressure warning lamp blinking timing</th>
<th>Activation tire position</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON a b</td>
<td>a: 0.3 sec. b: 1.0 sec.</td>
</tr>
<tr>
<td>OFF a</td>
<td>Front LH</td>
</tr>
<tr>
<td>ON a a b</td>
<td>a: 0.3 sec. b: 1.0 sec.</td>
</tr>
<tr>
<td>OFF a</td>
<td>Front RH</td>
</tr>
<tr>
<td>ON a a a b</td>
<td>a: 0.3 sec. b: 1.0 sec.</td>
</tr>
<tr>
<td>OFF a</td>
<td>Rear RH</td>
</tr>
<tr>
<td>ON a a a a a b</td>
<td>a: 0.3 sec. b: 1.0 sec.</td>
</tr>
<tr>
<td>OFF a</td>
<td>Rear LH</td>
</tr>
<tr>
<td>ON a b</td>
<td>a: 2 sec. b: 0.2 sec.</td>
</tr>
<tr>
<td>OFF a</td>
<td>All tires</td>
</tr>
</tbody>
</table>

Diagnosis Procedure

1. TIRE PRESSURE SENSOR ID REGISTRATION

Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".

Is tire pressure sensor ID registration completed?

YES >> Inspection End.
NO >> Perform the self-diagnosis for “AIR PRESSURE MONITOR”. Refer to BCS-53, "DTC Index".
EASY FILL TIRE ALERT DOES NOT ACTIVATE

DESCRIPTION

The Easy Fill Tire Alert does not function while inflating a tire when the select lever position is in P-range with the ignition switch ON.

NOTE:

- After starting to inflate the tire, it takes a few seconds for the Easy Fill Tire Alert to function.
- If there is no response for approximately 15 seconds or more after inflating the tires, cancel the use of the Easy Fill Tire Alert function or move the vehicle approximately 1 m (3.2 ft.) backward or forward to try again. The air filler pressure may be weak or out of service area.
- For Easy Fill Tire Alert, Refer to WT-10, "Easy Fill Tire Alert Function".

DIAGNOSIS PROCEDURE

1. LOCATION CHANGE

Move the vehicle to another area and repeat the procedure of the Easy Fill Tire Alert function. Refer to WT-10, "Easy Fill Tire Alert Function".

Is the function normal?

YES >> Inspection End.

NO >> GO TO 2.

2. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT

1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.

Are any DTCs detected?

YES >> Refer to BCS-53, "DTC Index".

NO >> GO TO 3.

3. CHECK HAZARD WARNING LAMP OPERATION

Check hazard warning lamp operation with hazard switch.

Do the hazard warning lamps operate?

YES >> GO TO 4.

NO >> Refer to DLK-119, "Diagnosis Procedure".

4. PERFORM SELF DIAGNOSTIC RESULT FOR TCM

With CONSULT

1. Turn ignition switch ON.
2. Select “Self Diagnostic Result” mode of “TRANSMISSION”.
3. Check DTC.

Are any DTCs detected?

YES >> Refer to TM-42, "CONSULT Function”.

NO >> GO TO 5.

5. CHECK HORN OPERATION

Check horn operation. Refer to SEC-128, "Diagnosis Procedure”.

Is the inspection result normal?

YES >> GO TO 6.

NO >> Repair or replace malfunctioning components.

6. PERFORM SELF DIAGNOSTIC RESULT

With CONSULT

1. Drive at a speed of 40 km/h (25 MPH) or more for 3 minutes, and then drive the vehicle at any speed for 10 minutes.
2. Select “Self Diagnostic Result” mode in “AIR PRESSURE MONITOR” of “BCM”.
3. Check DTC.
< SYMPTOM DIAGNOSIS >

Are any DTCs detected?

YES >> Refer to BCS-53, "DTC Index".
NO >> Replace BCM. Refer to BCS-82, "Removal and Installation".
ID REGISTRATION CANNOT BE COMPLETED

< SYMPTOM DIAGNOSIS >

ID REGISTRATION CANNOT BE COMPLETED

Description

The ID of the tire pressure sensor installed in each wheel cannot be registered in the Tire Pressure Monitoring System.
Inspect the tire pressure sensor or the TPMS system circuit.

Diagnosis Procedure

1. CHECK TIRE PRESSURE SENSOR ACTIVATION TOOL

Check tire pressure sensor activation tool.
Is the inspection result normal?

YES >> GO TO 2.
NO >> Replace the battery of tire pressure sensor activation tool or repair/replace the tire pressure sensor activation tool.

2. TIRE PRESSURE SENSOR ID REGISTRATION

Perform tire pressure sensor ID registration. Refer to WT-25, "Work Procedure".

CAUTION:
To perform ID registration, observe the following points:
• Never register ID in a place where radio waves are interfered (e.g. radio tower).
• Never register ID in a place close to vehicles including TPMS.

Is tire pressure sensor ID registration completed?

YES >> Inspection End.
NO >> GO TO 3.

3. CHECK TIRE PRESSURE SIGNAL

Change the work location and perform ID registration again.

NOTE:
Depending on the tire pressure sensor position*, a blind spot exists, and the tire pressure receiver gets poor reception. If an ID registration is performed under this condition, the registration may not be completed. In such case, follow the instructions below to improve the radio wave receiving environment.
• Rotate tire by 90°, 180°, or 270°. (This Step is to change tire pressure sensor position.)
• Open the door close to the tire of which ID registration is ongoing.

*: Radio wave reception condition depends on vehicle architecture (e.g. body harness layout, tire wheel design) or environment.

When ID registration is performed, which wheels do not react?

All wheels react and ID registration is possible.>>Inspection End.
Only certain wheel(s) do not react.>>Replace applicable tire pressure sensor. Refer to WT-68, "Removal and Installation".
All wheels do not react.>>Check the tire pressure receiver (remote keyless entry receiver). Refer to DLK-111, "Diagnosis Procedure".
NVH Troubleshooting Chart

Use the chart below to find the cause of the symptom. If necessary, repair or replace these parts.

<table>
<thead>
<tr>
<th>Reference page</th>
<th>WT-64</th>
<th>WT-64</th>
<th>WT-73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible cause and SUSPECTED PARTS</td>
<td>Improper installation, looseness</td>
<td>Out-of-round</td>
<td>Imbalance</td>
<td>Incorrect tire pressure</td>
<td>Uneven tire wear</td>
<td>Deformation or damage</td>
<td>Non-uniformity</td>
<td>Incorrect tire size</td>
<td>FRONT AXLE AND FRONT SUSPENSION</td>
<td>REAR AXLE AND REAR SUSPENSION</td>
<td>TIRE</td>
<td>WHEELS</td>
<td>DRIVE SHAFT</td>
<td>BRAKE</td>
<td>STEERING</td>
</tr>
<tr>
<td>Symptom</td>
<td>TIRE</td>
<td>WHEEL</td>
</tr>
<tr>
<td>Noise</td>
<td></td>
</tr>
<tr>
<td>Shake</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
</tr>
<tr>
<td>Shimmy</td>
<td></td>
</tr>
<tr>
<td>Shudder</td>
<td></td>
</tr>
<tr>
<td>Poor quality ride or handling</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
</tr>
<tr>
<td>Shake</td>
<td></td>
</tr>
<tr>
<td>Shimmy, Shudder</td>
<td></td>
</tr>
<tr>
<td>Poor quality ride or handling</td>
<td></td>
</tr>
</tbody>
</table>

×: Applicable
PERIODIC MAINTENANCE

WHEEL

Inspection

ALUMINUM WHEEL

1. Check tires for wear and improper inflation.
2. Check wheels for deformation, cracks and other damage. If deformed, remove wheel and check wheel runout.
3. Remove tire from wheel and mount wheel on a balancer machine.
 CAUTION:
 DO NOT use center hole cone-type clamping machines to hold wheel during tire removal/installation or balancing; damage to wheel paint, cladding or chrome may result. Use only rim-type or universal lug-type clamping machines to hold wheel during servicing.
 a. Set dial indicator as shown.
 b. Check runout. If runout value exceeds limit, replace wheel.

 Axial Runout (A) Refer to WT-73, "Wheel".
 Radial Runout (B) Refer to WT-73, "Wheel".
BALANCING WHEELS (ADHESIVE WEIGHT TYPE)

Preparation Before Adjustment
Remove inner and outer balance weights from wheel. Using releasing agent, remove double-faced adhesive tape from wheel and tire.

CAUTION:
- Be careful not to scratch wheel and tire during removal.
- After removing double-faced adhesive tape, wipe clean all traces of releasing agent from wheel and tire.

Wheel Balance Adjustment

CAUTION:
- DO NOT use center hole cone-type clamping machines to hold wheel during tire removal/installation or balancing; damage to wheel paint, cladding or chrome may result. Use only rim-type or universal lug-type clamping machines to hold wheel during servicing.
- If a balancer machine has an adhesive weight mode setting, select the adhesive weight mode setting and skip Step 2 below. If a balancer machine only has the clip-on (rim flange) weight mode setting, follow Step 2 to calculate correct size adhesive weight.

1. Set wheel and tire on balancer machine using center hole as a guide. Start balancer machine.
2. For balancer machines that only have a clip-on (rim flange) weight mode setting, follow this step to calculate correct size adhesive weight to use. When inner and outer imbalance values are shown on balancer machine indicator, multiply outer imbalance value by \(\frac{5}{3}\) (1.67) to determine balance weight that should be used. Select outer balance weight with a value closest to calculated value above and install into designated outer position of or at designated angle in relation to the wheel and tire.

 a. Indicated imbalance value \(\times \frac{5}{3}\) (1.67) = balance weight to be installed

 Calculation example:

 \[
 23 \text{ g (0.81 oz)} \times \frac{5}{3} (1.67) = 38.33 \text{ g (1.35 oz)} \Rightarrow 40 \text{ g (1.41 oz)}
 \]

 balance weight (closer to calculated balance weight value)

 NOTE:
 Note that balance weight value must be closer to calculated balance weight value.

 Example:

 \[
 37.4 \Rightarrow 35 \text{ g (1.23 oz)}
 \]
 \[
 37.5 \Rightarrow 40 \text{ g (1.41 oz)}
 \]
3. Install balance weight in position shown.

CAUTION:
- Do not install inner balance weight before installing outer balance weight.
- Before installing balance weight, be sure to clean mating surface of wheel and tire.
- When installing balance weight (1) to wheel and tire, set it into grooved area (A) on inner wall of wheel and tire as shown so that balance weight center (B) is aligned with balancer machine indication position (angle) (C).

CAUTION:
- Always use Genuine NISSAN adhesive balance weights.
- Balance weights are non-reusable; always replace with new ones.
- Do not install more than three sheets of balance weights.

4. If calculated balance weight value exceeds 50 g (1.76 oz), install two balance weight sheets in line with each other as shown.

CAUTION:
Do not install one balance weight sheet on top of another.

5. Start balancer machine again.

6. Install balance weight on inner side of wheel and tire in the balancer machine indication position (angle).

CAUTION:
Do not install more than two balance weights.

7. Start balancer machine. Make sure that inner and outer residual imbalance values are 5 g (0.17 oz) each or below.

8. If either residual imbalance value exceeds 5 g (0.17 oz), repeat installation procedures.

<table>
<thead>
<tr>
<th>Wheel balance</th>
<th>Dynamic (At flange)</th>
<th>Static (At flange)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum allowable im-</td>
<td>Refer to WT-73, "Wheel"</td>
<td></td>
</tr>
<tr>
<td>balance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIRE ROTATION
- Follow maintenance schedule for tire rotation service intervals. Refer to MA-6, "FOR USA AND CANADA : Explanation of General Maintenance" (for USA and Canada) or MA-8, "FOR MEXICO : Explanation of General Maintenance" (for Mexico).
- Rotate wheels and tires front to back in pattern as shown.
- When installing wheel, tighten wheel nuts to specified torque. Refer to WT-67, "Exploded View".

WARNING:
- Do not include spare tire when rotating tires.
- After rotating tires, check and adjust tire pressure.

CAUTION:
- When installing wheel nuts, tighten them diagonally by dividing the work two to three times in order to prevent wheels from developing any distortion.
- Be careful not to tighten wheel nuts to a torque exceeding specification to prevent strain on disc brake rotor.
- Use Genuine NISSAN wheel nuts.
Wheel nut tightening torque: Refer to WT-67, "Exploded View".

Perform ID registration after tire rotation. Refer to WT-25, "Description".
Removal and Installation

REMOVAL
1. Remove wheel nuts using power tool.
2. Remove wheel and tire.

INSTALLATION
Installation is in reverse order of removal.

CAUTION:
- When installing wheel nuts, tighten them diagonally by dividing the work two or three times in order to prevent wheels from developing any distortion.
- Be careful not to tighten wheel nuts to a torque exceeding specification to prevent strain on disc brake rotor.
- Use Genuine NISSAN wheel nuts.
Removal and Installation

REMOVAL
1. Remove wheel and tire using power tool. Refer to WT-67, "Removal and Installation".
2. Remove the valve cap and valve core to deflate the tire.
 NOTE:
 If the tire is to be reused, apply a matching mark on the tire in line with the position of the valve stem assembly for the purpose of wheel and tire balance adjustment after installation.
3. Remove the valve stem nut and allow tire pressure sensor (1) to fall into the tire.
4. Lubricate the tire outside bead well with a suitable non-silicone lubricant, and remove outside of tire from the wheel.
 CAUTION:
 • Do not use silicone lubricant. Use of silicone lubricant will deteriorate the tire and wheel.
 • Be sure not to damage the wheel or tire pressure sensor.
 • Do not allow lubricant to make contact with tire pressure sensor.
 • Verify that the tire pressure sensor (1) is at the bottom of the tire while performing the above.
5. Lubricate the tire inside bead well with a suitable non-silicone lubricant, and remove inside of tire from the wheel.
 CAUTION:
 • Do not use silicone lubricant. Use of silicone lubricant will deteriorate the tire and wheel.
 • Be sure not to damage the wheel.
6. Set the tire onto the tire changer turntable so that the tire pressure sensor inside the tire is located close to the valve stem hole in the wheel.
7. Turn the tire so that the valve stem hole in the wheel is at the bottom and bounce so that the tire pressure sensor (1) inside the tire is near the valve stem hole in the wheel. Carefully lift tire onto turn table and position the valve stem hole in the wheel (and tire pressure sensor) 270 degrees from mounting/dismounting head (2).
CAUTION: Do not damage the wheel or tire pressure sensor.

8. Remove the tire pressure sensor from the tire.
9. Remove the grommet seal and washer.
10. Remove the valve stem in the direction (←).

INSTALLATION

1. Apply a suitable non-silicone lubricant to the tire inside bead.
 CAUTION:
 - Replace the valve stem assembly if the valve stem has deformations, cracks, damage, or corrosion.
 - Do not use silicone lubricant. Use of silicone lubricant will deteriorate the tire and wheel.
 - Do not drop or strike the tire pressure sensor. Replace the tire pressure sensor if it has been dropped from higher than one meter.

2. Install the tire inside bead (1) onto the wheel (2) in the position shown.

3. Install the valve stem to the tire pressure sensor.
4. Install the washer (1) onto the valve stem, and then install the grommet seal (2) onto the valve stem.
 CAUTION:
 - Do not reuse grommet seal or washer.
 - Check the direction of the grommet seal.
 - Insert the grommet seal all the way to the base.

↑: Outside
CAUTION:
Direct the cut part (A) of the washer to the center of the valve stem as shown.

5. Follow the procedure below and install the tire pressure sensor to the wheel.
 a. Check the position of the valve stem before installing tire pressure sensor to the wheel.
 CAUTION:
 The base of the valve stem (A) must be positioned in the groove of the metal plate as shown.
 b. Hold tire pressure sensor as shown and press the sensor in the direction shown by the arrow (➡️) to bring into absolute contact with the wheel. Tighten the valve stem nut to the specified torque.

 Valve stem nut tightening torque : WT-68. "Exploded View"

CAUTION:
• Do not reuse valve core and valve cap.
• Check that grommet seal is free of foreign matter.
• Check that grommet seal contacts horizontally with road wheel.
• Check again that the base of valve stem is positioned in the groove of the metal plate.
• Manually tighten valve stem nut all the way to the wheel. (Do not use a power tool to avoid impact.)
TIRE PRESSURE SENSOR
< REMOVAL AND INSTALLATION >

• Do not tighten valve stem nut to more than the specified torque. It may cause grommet seal damage.
• Do not tighten valve stem nut to less than the specified torque. It may cause an air leak.

6. Place wheel on turntable of tire machine. Ensure that tire pressure sensor (1) is 270 degrees from mounting/dismounting head (2).

CAUTION:
Do not touch tire pressure sensor with mounting head.

7. Apply a suitable non-silicone lubricant to the tire outside bead.

CAUTION:
• Do not use silicone lubricant. Use of silicone lubricant will deteriorate the tire and wheel.
• Do not allow lubricant to make contact with tire pressure sensor.
• When installing, check that the tire does not turn together with the wheel.

8. Install the tire outside bead onto the wheel as normal.

NOTE:
If the tire is being reused, align the matching mark applied on the tire with the position of the valve stem assembly for the purpose of wheel and tire balance adjustment after installation. Make sure that the tire does not rotate relative to wheel.

9. Install the valve core and inflate tire. Refer to WT-73, "Tire".

CAUTION:
Do not reuse valve core.

10. Install the valve cap.

CAUTION:
Do not reuse valve cap.

11. Balance the wheel and tire. Install wheel and tire in the appropriate position on vehicle. Refer to WT-64, "Adjustment".

12. Perform the ID registration procedure. Refer to WT-25, "Description".

NOTE:
If replacing the tire pressure sensor, then the ID registration procedure must be performed.

Disposal

CAUTION:
• When discarding tire pressure sensor, remove battery from tire pressure sensor.
• Dispose of battery according to the law and local regulations.

1. Remove battery from tire pressure sensor.

NOTE:
The battery is sealed by tire pressure sensor with urethane.

a. Remove urethane from tire pressure sensor.

b. Cut battery terminal (A), then remove battery (1) from tire pressure sensor.
The Tire Pressure Receiver is an integral part of the Remote Keyless Entry Receiver. Refer to DLK-202, "Removal and Installation".
Wheel

<table>
<thead>
<tr>
<th>Runout</th>
<th>Axial runout</th>
<th>Radial runout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 0.3 mm (0.012 in)</td>
</tr>
<tr>
<td>Allowable imbalance</td>
<td>Dynamic (At flange)</td>
<td>Less than 5 g (0.17 oz) (one side)</td>
</tr>
<tr>
<td></td>
<td>Static (At flange)</td>
<td>Less than 10 g (0.35 oz)</td>
</tr>
</tbody>
</table>

Tire

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
</tr>
<tr>
<td>P245/45R18</td>
<td>230 (2.3, 33)</td>
</tr>
<tr>
<td>P245/40R19</td>
<td>230 (2.3, 33)</td>
</tr>
<tr>
<td>T145/80D17 (Spare)</td>
<td>420 (4.2, 60)</td>
</tr>
</tbody>
</table>